Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease driven by complex interactions between genetics and environmental factors. SLE is characterised by breaking self-immune tolerance and autoantibody production that triggers inflammation and damage of multiple organs. Given the highly heterogeneous nature of SLE, the treatments currently used are still not satisfactory with considerable side effects, and the development of new therapies is a major health issue for better patient management. In this context, mouse models significantly contribute to our knowledge of the pathogenesis of SLE and are an invaluable tool for testing novel therapeutic targets. Here, we discuss the role of the most used SLE mouse models and their contribution to therapeutic improvement. Considering the complexity of developing targeted therapies for SLE, adjuvant therapies are also increasingly proposed. Indeed, murine and human studies have recently revealed that gut microbiota is a potential target and holds great promises for successful new SLE therapies. However, the mechanisms of gut microbiota dysbiosis in SLE remain unclear to date. In this review, we propose an inventory of existing studies investigating the relationship between gut microbiota dysbiosis and SLE to establish microbiome signature that may serve as a potential biomarker of the disease and its severity as well as a new potential therapy target. This approach may open new possibilities for early diagnosis, prevention and therapeutic perspectives of SLE based on gut microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950977PMC
http://dx.doi.org/10.1136/lupus-2022-000776DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
sle
11
mouse models
8
microbiota dysbiosis
8
dysbiosis sle
8
gut
5
microbiota sle
4
sle animal
4
animal models
4
models clinical
4

Similar Publications

To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (P) and Bifidobacterium bifidum P45 (P), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of P or P decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!