Endocytosis of AMPA receptors: Role in neurological conditions.

Prog Mol Biol Transl Sci

Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary. Electronic address:

Published: February 2023

AMPA receptors are glutamate-gated ion channels, present in a wide range of neuron types and in glial cells. Their main role is to mediate fast excitatory synaptic transmission, and therefore, they are critical for normal brain function. In neurons, AMPA receptors undergo constitutive and activity-dependent trafficking between the synaptic, extrasynaptic and intracellular pools. The kinetics of AMPA receptor trafficking is crucial for the precise functioning of both individual neurons and neural networks involved in information processing and learning. Many of the neurological diseases evoked by neurodevelopmental and neurodegenerative malfunctions or traumatic injuries are caused by impaired synaptic function in the central nervous system. For example, attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD), tumors, seizures, ischemic strokes, and traumatic brain injury are all characterized by impaired glutamate homeostasis and associated neuronal death, typically caused by excitotoxicity. Given the important role of AMPA receptors in neuronal function, it is not surprising that perturbations in AMPA receptor trafficking are associated with these neurological disorders. In this book chapter, we will first introduce the structure, physiology and synthesis of AMPA receptors, followed by an in-depth description of the molecular mechanisms that control AMPA receptor endocytosis and surface levels under basal conditions or synaptic plasticity. Finally, we will discuss how impairments in AMPA receptor trafficking, particularly endocytosis, contribute to the pathophysiology of various neurological disorders and what efforts are being made to therapeutically target this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.pmbts.2022.09.007DOI Listing

Publication Analysis

Top Keywords

ampa receptors
20
ampa receptor
16
receptor trafficking
12
ampa
8
neurological disorders
8
receptors
5
endocytosis ampa
4
receptors role
4
neurological
4
role neurological
4

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!