Mitochondrial diseases require customized approaches for reproductive counseling, addressing differences in recurrence risks and reproductive options. The majority of mitochondrial diseases is caused by mutations in nuclear genes and segregate in a Mendelian way. Prenatal diagnosis (PND) or preimplantation genetic testing (PGT) are available to prevent the birth of another severely affected child. In at least 15%-25% of cases, mitochondrial diseases are caused by mitochondrial DNA (mtDNA) mutations, which can occur de novo (25%) or be maternally inherited. For de novo mtDNA mutations, the recurrence risk is low and PND can be offered for reassurance. For maternally inherited, heteroplasmic mtDNA mutations, the recurrence risk is often unpredictable, due to the mitochondrial bottleneck. PND for mtDNA mutations is technically possible, but often not applicable given limitations in predicting the phenotype. Another option for preventing the transmission of mtDNA diseases is PGT. Embryos with mutant load below the expression threshold are being transferred. Oocyte donation is another safe option to prevent the transmission of mtDNA disease to a future child for couples who reject PGT. Recently, mitochondrial replacement therapy (MRT) became available for clinical application as an alternative to prevent the transmission of heteroplasmic and homoplasmic mtDNA mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-821751-1.00004-X | DOI Listing |
Heliyon
January 2025
Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
Sudden cardiac death (SCD) is a major health concern, which can be the sign of a latent mitochondrial disease. However, mitochondrial DNA (mtDNA) contribution is largely unexplored in SCD at population level. Recently, mtDNA variants have been associated with congenital cardiopathy and higher risk of ischemic heart disease, suggesting them as potential risk factors also in SCD.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.
Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China. Electronic address:
Previous studies have reported that mtDNA-CN of blood was associated with a series of aging-related diseases. However, it remains unknown whether mtDNA-CN can be a potential biomarker of acute aortic syndromes (AAS). The mtDNA-CN in blood of 190 male patients with AAS and 207 healthy controls were detected by standardized qPCR-based assay.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
The study presents a detailed examination and follow-up of a Slovenian patient with an Leber Hereditary Optic Neuropathy (LHON)-like phenotype and bilateral optic neuropathy in whom genetic analysis identified a novel variant :m.15309T>C (Ile188Thr). We provide detailed analysis of the clinical examinations of a male patient with bilateral optic neuropathy from the acute stage to 8 years of follow-up.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!