Serotonin and dopamine regulate the aggressiveness of swimming crabs (Portunus trituberculatus) in different ways.

Physiol Behav

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China.

Published: May 2023

Bioamines act as a pivotal part in the regulation of aggressive behavior in animals as a type of neuroendocrine, but the patterns of how they regulate aggressiveness in crustaceans are still unclear due to species-specific responses. To determine the effects of serotonin (5-HT) and dopamine (DA) on the aggressiveness of swimming crabs (Portunus trituberculatus), we quantified their behavioral and physiological characteristics. The results showed that an injection of 5-HT at 0.5 mmol L and 5 mmol L could significantly enhance the aggressiveness of swimming crabs, as well as an injection of DA at 5 mmol L. The regulation of 5-HT and DA on aggressiveness is dose-dependent, and these two bioamines have different concentration thresholds that can trigger aggressiveness changes. 5-HT could up-regulate the 5-HTR1 gene expression and increase lactate content at the thoracic ganglion as the aggressiveness enhances, suggesting that 5-HT may activate related receptors and neuronal excitability to regulate aggressiveness. As a result of DA injection at 5 mmol L, lactate content in the chela muscle and hemolymph increased, glucose content in the hemolymph increased, and the CHH gene was significantly up-regulated. Pyruvate kinase and hexokinase enzyme activities in the hemolymph increased, which accelerated the glycolysis process. These results demonstrate that DA regulates the lactate cycle, which provides substantial short-term energy for aggressive behavior. Both 5-HT and DA can mediate aggressive behavior in the crab by activating calcium regulation in muscle tissue. We conclude that the enhancement of aggressiveness is a process of energy consumption, in which 5-HT acts on the central nervous system to induce aggressive behavior, and DA affects muscle and hepatopancreas tissue to provide a large amount of energy. This study expands upon the knowledge of regulatory mechanisms of aggressiveness in crustaceans and offers a theoretical foundation for enhancing crab culture management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2023.114135DOI Listing

Publication Analysis

Top Keywords

aggressive behavior
16
regulate aggressiveness
12
aggressiveness swimming
12
swimming crabs
12
hemolymph increased
12
aggressiveness
10
crabs portunus
8
portunus trituberculatus
8
aggressiveness crustaceans
8
lactate content
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!