Ascorbic acid-mediated zero-valent iron enhanced hydrogen production potential of bean dregs and corn stover by photo fermentation.

Bioresour Technol

Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China. Electronic address:

Published: April 2023

Ascorbic acid was introduced to enhance the performance of zero-valent iron (Fe(0)) in hydrogen production by photo fermentation of bean dregs and corn stover. The highest hydrogen production of 664.0 ± 5.3 mL and hydrogen production rate of 34.6 ± 0.1 mL/h was achieved at 150 mg/L ascorbic acid, which was 10.1% and 11.5% higher than that of 400 mg/L Fe(0) alone. The supplement of ascorbic acid to Fe(0) system accelerated the formation of Fe(Ⅱ) in solution due to its reducing and chelating ability. Hydrogen production of Fe(0) and ascorbic acid-Fe(0) (AA-Fe(0)) systems at different initial pH (5, 6, 7, 8 and 9) was studied. Result showed that hydrogen produced from AA-Fe(0) system was improved by 2.7-27.5% compared with Fe(0) system. The maximum hydrogen production of 767.5 ± 2.8 mL was achieved with initial pH 9 in the AA-Fe(0) system. This study provided a strategy for enhancing biohydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128761DOI Listing

Publication Analysis

Top Keywords

hydrogen production
24
ascorbic acid
12
zero-valent iron
8
bean dregs
8
dregs corn
8
corn stover
8
photo fermentation
8
fe0 system
8
aa-fe0 system
8
hydrogen
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!