Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aim: In atrial fibrillation (AF) ablation procedures, it is desirable to know whether a proper disconnection of the pulmonary veins (PVs) was achieved. We hypothesize that information about their isolation could be provided by analyzing changes in P-wave after ablation. Thus, we present a method to detect PV disconnection using P-wave signal analysis.
Methods: Conventional P-wave feature extraction was compared to an automatic feature extraction procedure based on creating low-dimensional latent spaces for cardiac signals with the Uniform Manifold Approximation and Projection (UMAP) method. A database of patients (19 controls and 16 AF individuals who underwent a PV ablation procedure) was collected. Standard 12-lead ECG was recorded, and P-waves were segmented and averaged to extract conventional features (duration, amplitude, and area) and their manifold representations provided by UMAP on a 3-dimensional latent space. A virtual patient was used to validate these results further and study the spatial distribution of the extracted characteristics over the whole torso surface.
Results: Both methods showed differences between P-wave before and after ablation. Conventional methods were more prone to noise, P-wave delineation errors, and inter-patient variability. P-wave differences were observed in the standard leads recordings. However, higher differences appeared in the torso region over the precordial leads. Recordings near the left scapula also yielded noticeable differences.
Conclusions: P-wave analysis based on UMAP parameters detects PV disconnection after ablation in AF patients and is more robust than heuristic parameterization. Moreover, additional leads different from the standard 12-lead ECG should be used to detect PV isolation and possible future reconnections better.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.106655 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!