Dermal Regenerative Templates in Orthopaedic Surgery.

J Am Acad Orthop Surg

From the Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC.

Published: April 2023

Management of soft-tissue injuries is a critical principle in the treatment of orthopaedic trauma. Understanding the options for soft-tissue reconstruction is vital for successful patient outcomes. Application of dermal regenerative templates (DRTs) in traumatic wounds has created a new rung in the reconstructive ladder bridging the gap between skin graft and flap coverage. There are multiple DRT products with specific clinical indications and mechanisms of action. This review outlines the up-to-date specifications and uses of DRT in commonly seen orthopaedic injuries.

Download full-text PDF

Source
http://dx.doi.org/10.5435/JAAOS-D-22-01089DOI Listing

Publication Analysis

Top Keywords

dermal regenerative
8
regenerative templates
8
templates orthopaedic
4
orthopaedic surgery
4
surgery management
4
management soft-tissue
4
soft-tissue injuries
4
injuries critical
4
critical principle
4
principle treatment
4

Similar Publications

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

: Due to the regeneration potential of growth factors (GFs) and platelet concentrates (PCs), facial rejuvenation has been a major area of attention in esthetic medicine. The effectiveness and safety of PCs and GFs in promoting face rejuvenation are examined in this systematic review, which is complemented by a case series. GFs are essential for collagen production and dermal matrix remodeling, while PCs, like Platelet-Rich Plasma (PRP), are abundant in bioactive chemicals that promote tissue healing and cellular regeneration.

View Article and Find Full Text PDF

Exosome-Like Vesicles from Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.

J Microbiol Biotechnol

November 2024

Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea.

(LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing.

View Article and Find Full Text PDF

Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus.

View Article and Find Full Text PDF

Peptide Nanofibers and Skin Regeneration.

Adv Exp Med Biol

January 2025

Requalite GmbH, Gräfelfing, Germany.

Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!