A synthesis of the tetrasaccharide fragment of tetrocarcin A is described. The key feature of this approach is highlighted by the regio- and diastereoselective Pd-catalyzed hydroalkoxylation of ene-alkoxyallenes with an unprotected l-digitoxose glycoside. The subsequent reaction with digitoxal in combination with chemoselective hydrogenation generated the target molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c02832 | DOI Listing |
Bioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Carbohydr Res
December 2024
Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India. Electronic address:
Synthesis of the tetrasaccharide repeating unit of the O-polysaccharide from Halomonas fontilapidosi KR26 was accomplished through a convergent [2 + 2]-block strategy using rationally protected monosaccharide synthons derived from commercially available sugars. The target tetrasaccharide was synthesized in the form of its 2-azidoethyl glycoside to ensure further conjugation with specific aglycons without hampering the reducing end stereochemistry. Use of only acyl/aryl protecting groups was targeted to keep the terminal azido-group intact for the utilization of "Click chemistry" for further conjugations.
View Article and Find Full Text PDFProteoglycan Res
October 2024
Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Holy Stone Healthcare, Preclinical and Development Div Hsinchu, Taipei, Taiwan.
Introduction: CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life.
Methods: The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg.
Gene
March 2025
Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia. Electronic address:
The oral pathogen, Porphyromonas gingivalis has a general O-glycosylation system which it utilises to modify hundreds of proteins localised outside of the cytoplasm. The O-glycan is a heptasaccharide that includes a putative L-fucose and N-acetylgalactosamine (GalNAc) as the 5th and 6th sugar residues respectively. The putative L-fucose is expected to be synthesized as GDP-L-fucose involving the enzymes Gmd (PGN_1078) and Fcl (PGN_1079), while GalNAc is putatively epimerised from GlcNAc by GalE (PGN_1614).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!