Lithium metal is a desirable anode for high-energy density lithium-sulfur (Li-S) batteries. However, its reliability is severely limited by dendrite growth and side reactions with polysulfides, which are yet challenging to solve simultaneously. Herein, we report a protective layer that works the same way as the ion-permselective cell membrane, yielding a corrosion-resistant and dendrite-free Li metal anode specially for Li-S batteries. A self-limited assembly of octadecylamine together with Al ions on a Li metal anode surface produces a dense, stable yet thin layer with ionic conductive Al-Li alloy uniformly embedded in it, which prevents the passage of polysulfides but regulates the penetrated Li ion flux for uniform Li deposition. As a result, the assembled batteries show excellent cycling stability even with a high sulfur-loaded cathode, suggesting a straightforward but promising strategy to stabilize highly active anodes for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c10047DOI Listing

Publication Analysis

Top Keywords

li-s batteries
8
metal anode
8
permselective coating
4
coating protects
4
protects lithium
4
anode
4
lithium anode
4
anode practical
4
practical lithium-sulfur
4
lithium-sulfur battery
4

Similar Publications

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

Natural hematite-derived NiFeO as a separator modification material for improved Li-S battery performance.

Chem Commun (Camb)

January 2025

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.

View Article and Find Full Text PDF

Alluaudite-type NaFe(SO) (NFS) with high theoretical energy density is regarded as the promising cathode of sodium-ion batteries (SIBs), while practical rate and cyclic performances are still hindered by intrinsic poor conductivity. Here, a facile method is developed, collaborating high-boiling organic solvents assisted colloidal synthesis (HOS-CS) with sintering for tailoring NaFe(SO) nanocrystals decorated by conductive carbon network toward high-rate-capability cathode of SIBs. Impressively, the as-prepared NaFe(SO)@MC provides 60.

View Article and Find Full Text PDF

Critical Role of Tetrahedral Coordination in Determining the Polysulfide Conversion Efficiency on Spinel Oxides.

J Am Chem Soc

January 2025

Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore639798 ,Singapore.

Understanding the structure-property relationship and the way in which catalysts facilitate polysulfide conversion is crucial for the rational design of lithium-sulfur (Li-S) battery catalysts. Herein, a series of NiAlO, CoAlO, and CuAlO spinel oxides with varying Ni, Co, or Cu tetrahedral and octahedral site occupancy are studied as Li-S battery catalysts. Combined with experimental and theoretical analysis, the tetrahedral site is identified as the most active site for enhancing polysulfide adsorption and charge transfer.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!