Efficient separation and purification of hemoglobin from blood and other complicated biological fluids still remains a big challenge. Molecularly imprinted polymers (MIPs) of hemoglobin are potential choices; however, they suffer from severe problems including difficult template removal and low imprinting efficiency like other protein-imprinted polymers. Herein, a novel MIP of bovine hemoglobin (BHb) was designed in which a peptide crosslinker (PC), instead of the commonly used crosslinkers, was used. The PC, a random copolymer of lysine and alanine, adopts an α-helical conformation at pH 10 but transits to a random coil conformation at pH 5. The introduction of alanine residues lowers the pH range at which the PC undergoes helix-coil transition. The imprint cavities in the polymers are shape-memorable due to the reversible and precise helix-coil transition of the peptide segments in the polymers. They can be enlarged by lowering pH from 10 to 5, thus allowing complete removal of the template protein under mild conditions. When the pH is adjusted back to 10, their original size and shape will be recovered. Therefore, the MIP binds the template protein BHb with high affinity. Compared with the MIP crosslinked with the commonly used crosslinker, the imprinting efficiency of the PC-crosslinked MIP is significantly improved. In addition, both the maximum adsorption capacity (641.9 mg/g) and imprinting factor (7.2) are much higher than the BHb MIPs reported previously. The new BHb MIP also exhibits high selectivity toward BHb and good reusability. Thanks to the high adsorption capacity and high selectivity of the MIP, when it was applied to extract BHb from bovine blood, BHb in the blood sample was extracted almost completely, and high purity product was obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c01285 | DOI Listing |
J Chromatogr A
December 2024
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:
Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:
The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania. Electronic address:
The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Applied Science Department, The NorthCap University, 122017, Gurugram, Haryana, India.
For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!