Purpose For Review: This perspective piece has two goals: first, to describe issues related to artificial intelligence-based applications for cancer control as they may impact health inequities or disparities; and second, to report on a review of systematic reviews and meta-analyses of artificial intelligence-based tools for cancer control to ascertain the extent to which discussions of justice, equity, diversity, inclusion, or health disparities manifest in syntheses of the field's best evidence.
Recent Findings: We found that, while a significant proportion of existing syntheses of research on AI-based tools in cancer control use formal bias assessment tools, the fairness or equitability of models is not yet systematically analyzable across studies. Issues related to real-world use of AI-based tools for cancer control, such as workflow considerations, measures of usability and acceptance, or tool architecture, are more visible in the literature, but still addressed only in a minority of reviews. Artificial intelligence is poised to bring significant benefits to a wide range of applications in cancer control, but more thorough and standardized evaluations and reporting of model fairness are required to build the evidence base for AI-based tool design for cancer and to ensure that these emerging technologies promote equitable healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11912-023-01376-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!