AI Article Synopsis

  • Pediatric high-grade gliomas (pHGGs) are aggressive brain tumors in children with poor outcomes, linked to abnormal histone modifications, particularly elevated H3K9me3 levels.
  • Research reveals that the methyltransferase SETDB1 is significantly enriched in pHGGs and its expression correlates with both poor patient survival and altered tumor characteristics.
  • Silencing SETDB1 in pHGG cell lines decreased cell viability, migration, and expression of mesenchymal markers, indicating its critical oncogenic role and potential as a therapeutic target in combating pHGG progression.

Article Abstract

Pediatric high-grade gliomas (pHGGs) are heterogeneous, diffuse, and highly infiltrative tumors with dismal prognosis. Aberrant post-translational histone modifications with elevated histone 3 lysine trimethylation (H3K9me3) have been recently implicated in pHGGs' pathology, conferring to tumor heterogeneity. The present study investigates the potential involvement of H3K9me3 methyltransferase SETDB1 in the cellular function, progression, and clinical significance of pHGG. The bioinformatic analysis detected SETDB1 enrichment in pediatric gliomas compared to the normal brain, as well as positive and negative correlations with a proneural and mesenchymal signature, respectively. In our cohort of pHGGs, SETDB1 expression was significantly increased compared to pLGG and normal brain tissue and correlated with p53 expression, as well as reduced patients' survival. In accordance, H3K9me3 levels were also elevated in pHGG compared to the normal brain and were associated with worse patient survival. Gene silencing of SETDB1 in two patient-derived pHGG cell lines showed a significant reduction in cell viability followed by reduced cell proliferation and increased apoptosis. SETDB1 silencing further reduced cell migration of pHGG cells and the expression of the mesenchymal markers N-cadherin and vimentin. mRNA analysis of epithelial-mesenchymal transition (EMT) markers upon SETDB1 silencing showed a reduction in SNAI1 levels and downregulation of CDH2 along with the EMT regulator gene MARCKS. In addition, SETDB1 silencing significantly increased the bivalent tumor suppressor gene SLC17A7 mRNA levels in both cell lines, indicating its implication in the oncogenic process.Altogether, our findings demonstrate a predominant oncogenic role of SETDB1 in pHGG which along with elevated H3K9me3 levels correlate significantly to tumor progression and inferior patients' survival. There is evidence that targeting SETDB1 may effectively inhibit pHGG progression, providing a novel insight into the therapeutic strategies for pediatric gliomas. KEY MESSAGES: SETDB1 gene expression is enriched in pHGG compared to normal brain. SETDB1 expression is increased in pHGG tissues and associates with reduced patients' survival. Gene silencing of SETDB1 reduces cell viability and migration. SETDB1 silencing affects mesenchymal markers expression. SETDB1 silencing upregulates SLC17A7 levels. SETDB1 has an oncogenic role in pHGG.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-023-02294-8DOI Listing

Publication Analysis

Top Keywords

setdb1 silencing
20
setdb1
16
normal brain
16
compared normal
12
patients' survival
12
phgg
9
methyltransferase setdb1
8
pediatric high-grade
8
high-grade gliomas
8
pediatric gliomas
8

Similar Publications

SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.

View Article and Find Full Text PDF

Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated.

View Article and Find Full Text PDF

RNA binding by Periphilin plays an essential role in initiating silencing by the HUSH complex.

Nucleic Acids Res

December 2024

Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.

Article Synopsis
  • The human silencing hub (HUSH) complex is an epigenetic system that silences retroelements in the genome, primarily through components like TASOR, MPP8, and Periphilin, which work together to facilitate chromatin modification.
  • Periphilin is identified as the main RNA-binding component of the HUSH complex, and its N-terminal domain is crucial for both RNA binding and the overall function of HUSH.
  • The study demonstrates that Periphilin can exert HUSH-dependent silencing even when artificially tethered to a transcript that normally would not be silenced, highlighting its importance in the complex's mechanism of action.
View Article and Find Full Text PDF

Structure and Methyl-lysine Binding Selectivity of the HUSH Complex Subunit MPP8.

J Mol Biol

January 2025

Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK. Electronic address:

The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns.

View Article and Find Full Text PDF

Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!