The self-diffusion coefficients of each of the components in mixtures containing pyridine and each of the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides in acetonitrile were determined using NMR diffusometry (i. e., Pulsed Gradient Spin Echo). The nature of solvation was found to change significantly with the proportion of salt in the mixtures. Increased diffusion coefficients (when corrected for viscosity) for the molecular components were observed with increasing proportion of ionic liquid and with increasing alkyl chain length on the cation. Comparison of the molecular solvents suggests increased interactions in solution of the pyridine with other components of the mixture, consistent with the proposed interactions shown previously to drive changes in reaction kinetics. Discontinuities were seen in the diffusion data for each species in solution across different ionic liquids between the hexyl and octyl derivatives, suggesting a change in the structuring in solution as the alkyl chain on the cation changes and demonstrating the importance of such when considering homologous series.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300015DOI Listing

Publication Analysis

Top Keywords

homologous series
12
ionic liquids
8
alkyl chain
8
diffusion measurements
4
measurements understand
4
understand dynamics
4
dynamics structuring
4
structuring solutions
4
solutions involving
4
involving homologous
4

Similar Publications

Adenomatoid odontogenic tumors (AOT), first described by Steensland in 1905, are benign, slowly enlarging, nonaggressive, odontogenic epithelial neoplasms comprising 3%-7% of all odontogenic tumors. They tend to originate from the dental lamina remnants or the reduced enamel epithelium. Mutation at codon 12 of KRAS oncogene (Kirsten rat sarcoma viral oncogene homolog) plays a pivotal role in the pathogenesis.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitochondrial genome of red raspberry (Rubus idaeus L.) revealing repeat-mediated recombination and gene transfer.

BMC Plant Biol

January 2025

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.

Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

Irradiated Homologous Costal Cartilage Grafts in Complex Functional Septorhinoplasty.

Facial Plast Surg

January 2025

Department of Rhinology and Facial Plastic Surgery, Royal National ENT and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom.

Optimal results in complex nasal reconstruction, particularly in the context of post-traumatic and revision septorhinoplasty, often require the use of cartilage grafts to provide additional structural support to the nose. While autologous costal cartilage (ACC) has been traditionally used, this can be limited by donor site morbidity, increased operative time, and in some cases, lack of suitable cartilage for grafting. There has been a trend towards using irradiated homologous costal cartilage (IHCC) as an alternative source of graft material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!