A series of novel hinge-like molecules, namely dipyrrolo-1,4-dithiins (PDs), were prepared and fully characterized by NMR, UV/vis, cyclic voltammogram, ESR, and single crystal X-ray diffraction (SCXRD) analysis. The lateral fusion of pyrroles with 1,4-dithiins has led to not only retained key features of a dithiin, but also enhanced redox-activity with increased susceptibility to radical cations via redox or chemical oxidation. Stabilization of their radicals are observed for the N,N-tert-butyl or N,N-triphenylmethyl PD as evidenced by ESR measurements. DFT calculations and SCXRD analysis revealed PDs are extremely flexible with adaptive molecular geometries that can be mechanically regulated via crystal packing or host-guest complexation. The excellent donor nature of PDs renders inclusion complexes with the cyclophane bluebox (cyclobis(paraquat-p-phenylene)), featuring association constants up to 10  M . Additionally, a planarized transition intermediate associated with inversion dynamics of a PD has been preserved in the pseudorotaxane structure with assistances of π⋅⋅⋅π and S⋅⋅⋅π interactions. The hinged structure, excellent redox-activity, and adaptive nature of PDs could further enable accesses to exotic redox switchable host-guest chemistry and functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202300101DOI Listing

Publication Analysis

Top Keywords

host-guest complexation
8
scxrd analysis
8
nature pds
8
molecular hinges
4
hinges fusion
4
fusion pyrrole
4
pyrrole dithiin
4
dithiin synthesis
4
synthesis structure
4
structure redox
4

Similar Publications

Flexible framework of computing binding free energy using the energy representation theory of solution.

J Chem Phys

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Host-guest binding plays a crucial role in the functionality of various systems, and its efficiency is often quantified using the binding free energy, which represents the free-energy difference between the bound and dissociated states. Here, we propose a methodology to compute the binding free energy based on the energy representation (ER) theory of solution, which enables us to evaluate the free-energy difference between the systems of interest with the molecular dynamics (MD) simulations. Unlike the other free-energy methods, such as the Bennett acceptance ratio (BAR), the ER theory does not require the MD simulations for hypothetical intermediate states connecting the systems of interest, leading to reduced computational costs.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

Hypoxia-Initiated Supramolecular Free Radicals Induce Intracellular Polymerization for Precision Tumor Therapy.

J Am Chem Soc

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.

Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Recent developments in pillar[5]arene-based nanomaterials for cancer therapy.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.

Nanomaterials possess unique size characteristics, enabling them to cross tissue gaps, penetrate the blood-brain barrier and endothelial cells, and release drugs at the cellular level. Additionally, the surface of nanomaterials is readily functionalized, endowing them with good biocompatibility, low biotoxicity, and specific targeting. All these advantages render nanomaterials broad application prospects in tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!