Memory B-cell diversity: From early generation to tissue residency and reactivation.

Eur J Immunol

Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Published: April 2023

Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202250085DOI Listing

Publication Analysis

Top Keywords

mbc
6
memory b-cell
4
b-cell diversity
4
diversity early
4
early generation
4
generation tissue
4
tissue residency
4
residency reactivation
4
reactivation memory
4
memory cells
4

Similar Publications

Bee venom (BV) represents a promising natural alternative to conventional antibiotics, particularly significant given its broad-spectrum antimicrobial activity and potential to address the growing challenge of antimicrobial resistance. The prevalence of antimicrobial-resistant microorganisms (AMR) is a global burden that affects human health and the economies of different countries. As a result, several scientific communities around the world are searching for safe alternatives to antibiotics.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Amid the escalating challenge of antibiotic resistance, the exploration of new sources has become essential, with plants serving as a promising reservoir of bioactive compounds. <i>Cannabis sativa</i> has attracted significant research interest for its antimicrobial properties and broad applications in medicine, industry and nutrition. This study aimed to investigate the antibacterial activity of ethanolic extracts from the stems and leaves of the Hang Kra Rog Phu Phan ST1 strain against twelve human pathogenic bacteria.

View Article and Find Full Text PDF

Unravelling Eribulin's role in metastatic breast cancer: evaluating benefits for both triple negative and non-triple negative patients in real-world scenarios in resource-constrained settings.

Ecancermedicalscience

November 2024

Department of Palliative Medicine, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Varanasi 221005, India.

Background: Metastatic breast cancer (MBC) patients have numerous options for treatment. However, it is essential to consider treatments with favorable toxicity profiles and convenient modes of administration. Eribulin has shown effectiveness in aggressive MBC, but there is a lack of sufficient real-world data specific to Indian patients.

View Article and Find Full Text PDF

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis.

Probiotics Antimicrob Proteins

January 2025

Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!