Transition metal radical-type carbene transfer catalysis is a sustainable and atom-efficient method to generate C-C bonds, especially to produce fine chemicals and pharmaceuticals. A significant amount of research has therefore been devoted to applying this methodology, which resulted in innovative routes toward otherwise synthetically challenging products and a detailed mechanistic understanding of the catalytic systems. Furthermore, combined experimental and theoretical efforts elucidated the reactivity of carbene radical complexes and their off-cycle pathways. The latter can imply the formation of N-enolate and bridging carbenes, and undesired hydrogen atom transfer by the carbene radical species from the reaction medium which can lead to catalyst deactivation. In this concept paper, we demonstrate that understanding off-cycle and deactivation pathways not only affords solutions to circumvent them, but can also uncover novel reactivity for new applications. In particular, considering off-cycle species involved in metalloradical catalysis can stimulate further development of radical-type carbene transfer reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202300336 | DOI Listing |
Organometallics
June 2024
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
Radical-type carbene transfer catalysis is an efficient method for the direct functionalization of C-H and C=C bonds. However, carbene radical complexes are currently formed via high-energy carbene precursors, such as diazo compounds or iodonium ylides. Many of these carbene precursors require additional synthetic steps, have an explosive nature, or generate halogenated waste.
View Article and Find Full Text PDFACS Catal
April 2023
Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany.
The Friedel-Crafts acylation reaction, which belongs to the class of electrophilic aromatic substitutions is a highly valuable and versatile reaction in synthesis. Regioselectivity is predictable and determined by electronic as well as steric factors of the (hetero)arene substrate. Herein, a radical approach for the acylation of arenes and heteroarenes is presented.
View Article and Find Full Text PDFChemistry
May 2023
Homogeneous, Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Transition metal radical-type carbene transfer catalysis is a sustainable and atom-efficient method to generate C-C bonds, especially to produce fine chemicals and pharmaceuticals. A significant amount of research has therefore been devoted to applying this methodology, which resulted in innovative routes toward otherwise synthetically challenging products and a detailed mechanistic understanding of the catalytic systems. Furthermore, combined experimental and theoretical efforts elucidated the reactivity of carbene radical complexes and their off-cycle pathways.
View Article and Find Full Text PDFJACS Au
August 2021
Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are () tools to characterize redox-active ligands; () novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; () development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and () utilization of redox-active ligands to influence the spin state of the metal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!