Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronavirus disease 2019 is known to be regulated by multiple factors such as delayed immune response, impaired T cell activation, and elevated levels of proinflammatory cytokines. Clinical management of the disease remains challenging due to interplay of various factors as drug candidates may elicit different responses depending on the staging of the disease. In this context, we propose a computational framework which provides insights into the interaction between viral infection and immune response in lung epithelial cells, with an aim of predicting optimal treatment strategies based on infection severity. First, we formulate the model for visualizing the nonlinear dynamics during the disease progression considering the role of T cells, macrophages and proinflammatory cytokines. Here, we show that the model is capable of emulating the dynamic and static data trends of viral load, T cell, macrophage levels, interleukin (IL)-6 and TNF-α levels. Second, we demonstrate the ability of the framework to capture the dynamics corresponding to mild, moderate, severe, and critical condition. Our result shows that, at late phase (>15 days), severity of disease is directly proportional to pro-inflammatory cytokine IL6 and tumor necrosis factor (TNF)-α levels and inversely proportional to the number of T cells. Finally, the simulation framework was used to assess the effect of drug administration time as well as efficacy of single or multiple drugs on patients. The major contribution of the proposed framework is to utilize the infection progression model for clinical management and administration of drugs inhibiting virus replication and cytokine levels as well as immunosuppressant drugs at various stages of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!