Overuse injury in tendon tissue (tendinopathy) is a frequent and costly musculoskeletal disorder and represents a major clinical problem with unsolved pathogenesis. Studies in mice have demonstrated that circadian clock-controlled genes are vital for protein homeostasis and important in the development of tendinopathy. We performed RNA sequencing, collagen content and ultrastructural analyses on human tendon biopsies obtained 12 h apart in healthy individuals to establish whether human tendon is a peripheral clock tissue and we performed RNA sequencing on patients with chronic tendinopathy to examine the expression of circadian clock genes in tendinopathic tissues. We found time-dependent expression of 280 RNAs including 11 conserved circadian clock genes in healthy tendons and markedly fewer (23) differential RNAs with chronic tendinopathy. Further, the expression of COL1A1 and COL1A2 was reduced at night but was not circadian rhythmic in synchronised human tenocyte cultures. In conclusion, day-to-night changes in gene expression in healthy human patellar tendons indicate a conserved circadian clock as well as the existence of a night reduction in collagen I expression. KEY POINTS: Tendinopathy is a major clinical problem with unsolved pathogenesis. Previous work in mice has shown that a robust circadian rhythm is required for collagen homeostasis in tendons. The use of circadian medicine in the diagnosis and treatment of tendinopathy has been stifled by the lack of studies on human tissue. Here, we establish that the expression of circadian clock genes in human tendons is time dependent, and now we have data to corroborate that circadian output is reduced in diseased tendon tissues. We consider our findings to be of significance in advancing the use of the tendon circadian clock as a therapeutic target or preclinical biomarker for tendinopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607887 | PMC |
http://dx.doi.org/10.1113/JP284083 | DOI Listing |
J Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2025
Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Central laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, P.R. China.
Background: Circadian disruptions are increasingly recognized in Alzheimer's disease (AD) patients and may influence disease onset and progression. This study examines how AD pathology affects blood-borne factors that regulate circadian rhythms.
Methods: Eighty-five participants from the Sino Longitudinal Study on Cognitive Decline were enrolled: 35 amyloid-beta negative normal controls (Aβ- NCs), 23 amyloid-beta positive normal controls (Aβ+ NCs), 15 patients with amnestic mild cognitive impairment (aMCI), and 12 with Alzheimer's disease dementia (ADD).
FASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.
View Article and Find Full Text PDFiScience
January 2025
Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA.
Colorectal cancer (CRC) is the third most common cancer worldwide, with rising prevalence among younger adults. Several lifestyle factors, particularly disruptions in circadian rhythms by light-dark (LD) shifts, are known to increase CRC risk. Epidemiological studies previously showed LD-shifts are associated with increased risk of CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!