Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078908 | PMC |
http://dx.doi.org/10.1093/genetics/iyad028 | DOI Listing |
J Cell Biol
February 2025
Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
Kinetochores are multiprotein complexes that link chromosomes to microtubules and are essential for chromosome segregation during cell divisions. In this issue, Alves Domingos et al. (https://doi.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Dept. of Genetics.
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells (Farley-Barnes, 2018). After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!