Batch alignment of single-cell transcriptomics data using deep metric learning.

Nat Commun

Changping Laboratory, 102206, Beijing, China.

Published: February 2023

scRNA-seq has uncovered previously unappreciated levels of heterogeneity. With the increasing scale of scRNA-seq studies, the major challenge is correcting batch effect and accurately detecting the number of cell types, which is inevitable in human studies. The majority of scRNA-seq algorithms have been specifically designed to remove batch effect firstly and then conduct clustering, which may miss some rare cell types. Here we develop scDML, a deep metric learning model to remove batch effect in scRNA-seq data, guided by the initial clusters and the nearest neighbor information intra and inter batches. Comprehensive evaluations spanning different species and tissues demonstrated that scDML can remove batch effect, improve clustering performance, accurately recover true cell types and consistently outperform popular methods such as Seurat 3, scVI, Scanorama, BBKNN, Harmony et al. Most importantly, scDML preserves subtle cell types in raw data and enables discovery of new cell subtypes that are hard to extract by analyzing each batch individually. We also show that scDML is scalable to large datasets with lower peak memory usage, and we believe that scDML offers a valuable tool to study complex cellular heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944958PMC
http://dx.doi.org/10.1038/s41467-023-36635-5DOI Listing

Publication Analysis

Top Keywords

cell types
16
remove batch
12
deep metric
8
metric learning
8
batch
6
cell
5
scdml
5
batch alignment
4
alignment single-cell
4
single-cell transcriptomics
4

Similar Publications

Background: The common drugs used for the treatment of Newly Diagnosed Multiple Myeloma (NDMM) include bortezomib and lenalidomide, but the adverse effects of lenalidomide cannot be ignored, especially when it is used in the initial therapy.

Methods: This retrospective study evaluated the efficacy and safety of a modified DVD regimen (pegylated liposomal doxorubicin, bortezomib, and dexamethasone) followed by lenalidomide in the treatment of NDMM. A total of 40 NDMM patients were treated with a reduced dose of pegylated liposomal doxorubicin (20 mg/m) on day 1, subcutaneous bortezomib (1.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!