In this study, we proposes a humanoid dual-arm explosive ordnance disposal (EOD) robot design. First, a seven-degree-of-freedom high-performance collaborative and flexible manipulator is developed, aiming at the transfer and dexterous operation of dangerous objects in EOD tasks. Furthermore, an immersive operated humanoid dual-arm dexterous explosive disposal robot (FC-EODR) is designed, which has a high passability to complex terrains such as low walls, slope roads, and stairs. It can remotely detect, manipulate, and remove explosives in dangerous environments through immersive velocity teleoperation. In addition, an autonomous tool-changing system is constructed, which enables the robot to flexibly switch between different tasks. The effectiveness of the FC-EODR is finally verified through a series of experiments, including the platform performance test, manipulator load test, teleoperated wire trimming, and screw-screwing experiments. This letter provides the technical foundation for robots to replace humans in EOD tasks and emergency situations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944835 | PMC |
http://dx.doi.org/10.3390/biomimetics8010067 | DOI Listing |
Biomimetics (Basel)
December 2024
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
Humanoid robots are becoming a global research focus. Due to the limitations of bipedal walking technology, mobile humanoid robots equipped with a wheeled chassis and dual arms have emerged as the most suitable configuration for performing complex tasks in factory or home environments. To address the high redundancy issue arising from the wheeled chassis and dual-arm design of mobile humanoid robots, this study proposes a whole-body coordinated motion control algorithm based on arm potential energy optimization.
View Article and Find Full Text PDFBiomimetics (Basel)
October 2024
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2023
Weihai Institute for Bionics, Jilin University, Weihai 264402, China.
As human-robot interaction and teleoperation technologies advance, anthropomorphic control of humanoid arms has garnered increasing attention. However, accurately translating sensor-detected arm motions to the multi-degree freedom of a humanoid robotic arm is challenging, primarily due to occlusion issues with single-sensor setups, which reduce recognition accuracy. To overcome this problem, we propose a human-like arm control strategy based on multi-sensor fusion.
View Article and Find Full Text PDFBiomimetics (Basel)
February 2023
The School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
In this study, we proposes a humanoid dual-arm explosive ordnance disposal (EOD) robot design. First, a seven-degree-of-freedom high-performance collaborative and flexible manipulator is developed, aiming at the transfer and dexterous operation of dangerous objects in EOD tasks. Furthermore, an immersive operated humanoid dual-arm dexterous explosive disposal robot (FC-EODR) is designed, which has a high passability to complex terrains such as low walls, slope roads, and stairs.
View Article and Find Full Text PDFInt J Rob Res
February 2021
Idiap Research Institute, Martigny, Switzerland.
Body posture influences human and robot performance in manipulation tasks, as appropriate poses facilitate motion or the exertion of force along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control, and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or applying a specific force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!