Background: Streoptomyces rimosus M527 is a producer of the polyene macrolide rimocidin which shows activity against various plant pathogenic fungi. Notably, the regulatory mechanisms underlying rimocidin biosynthesis are yet to be elucidated.
Results: In this study, using domain structure and amino acid alignment and phylogenetic tree construction, rimR2, which located in the rimocidin biosynthetic gene cluster, was first found and identified as a larger ATP-binding regulators of the LuxR family (LAL) subfamily regulator. The rimR2 deletion and complementation assays were conducted to explore its role. Mutant M527-ΔrimR2 lost its ability to produce rimocidin. Complementation of M527-ΔrimR2 restored rimocidin production. The five recombinant strains, M527-ER, M527-KR, M527-21R, M527-57R, and M527-NR, were constructed by overexpressing rimR2 gene using the promoters permE, kasOp, SPL21, SPL57, and its native promoter, respectively, to improve rimocidin production. M527-KR, M527-NR, and M527-ER exhibited 81.8%, 68.1%, and 54.5% more rimocidin production, respectively, than the wild-type (WT) strain, while recombinant strains M527-21R and M527-57R exhibited no obvious differences in rimocidin production compared with the WT strain. RT-PCR assays revealed that the transcriptional levels of the rim genes were consistent with the changes in rimocidin production in the recombinant strains. Using electrophoretic mobility shift assays, we confirmed that RimR2 can bind to the promoter regions of rimA and rimC.
Conclusion: A LAL regulator RimR2 was identified as a positive specific-pathway regulator of rimocidin biosynthesis in M527. RimR2 regulates the rimocidin biosynthesis by influencing the transcriptional levels of rim genes and binding to the promoter regions of rimA and rimC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942304 | PMC |
http://dx.doi.org/10.1186/s12934-023-02039-9 | DOI Listing |
Curr Microbiol
December 2024
Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland.
The shake flask cocultures of Aspergillus terreus and Streptomyces rimosus were investigated with regard to the production of mevinolinic acid (lovastatin), oxytetracycline, and other secondary metabolites (SMs). The aim of the study was to determine the effect of inoculum type (spore suspension or preculture) on the levels of SMs in the fermentation broth. Altogether, 17 SMs were detected, including 4 products with confirmed identities, 10 putatively annotated metabolites, and 3 unknown molecules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China. Electronic address:
The TetR family of regulators (TFRs), commonly reported as repressors, plays a role in regulating secondary metabolite production in Streptomyces. In this study, we sought to elucidate the relationship between TFRs and rimocidin production of Streptomyces rimosus M527. Through transcriptomic analysis, we identified the protein RS24090, which exhibited significant differential expression.
View Article and Find Full Text PDFArch Microbiol
November 2024
Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland.
The influence of the initial pH on the morphology and secondary metabolite production in cocultures and axenic cultures of Aspergillus terreus and Streptomyces rimosus was investigated. The detected secondary metabolites (6 of bacterial and 4 of fungal origin) were not found in the cultures initiated at pH values less than or equal to 4.0.
View Article and Find Full Text PDFBioprocess Biosyst Eng
June 2024
Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005, Lodz, Poland.
Streptomyces produce a broad spectrum of biologically active molecules such as oxytetracycline and rimocidin, which are widely used in human and animal treatments. microparticle-enhanced cultivation (MPEC) is one of the tools used for Streptomyces bioprocesses intensification by the control of mycelial morphology. In the present work, morphological changes of Streptomyces rimosus caused by the addition of 10 µm talc microparticles in MPEC were correlated with the biosynthetic activity of the microorganism.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2023
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China.
The transposon mutagenesis strategy has been employed to generate random insertion mutants and analyze the correlation between genes and secondary metabolites in the genus Streptomyces. In this study, our primary objective was to identify an unknown gene involved in rimocidin biosynthesis and elucidate its role in rimocidin production in Streptomyces rimosus M527. To achieve this, we established a random mutant library of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!