Group A (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980535PMC
http://dx.doi.org/10.1080/21505594.2023.2180228DOI Listing

Publication Analysis

Top Keywords

immunodominant region
8
gas pili
8
t-antigen subunits
8
polymerized pilus
8
t-antigen
6
gas
5
identification immunodominant
4
region
4
region group
4
group t-antigen
4

Similar Publications

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Initial antigen encounter determines robust T-cell immunity against SARS-CoV-2 BA.2.86 variant three years later.

J Infect

December 2024

ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain. Electronic address:

Objectives: We aimed to evaluate the adaptive immune responses cross-recognition of the hypermutated SARS-CoV-2 BA.2.86 variant and identify the determinants influencing this recognition.

View Article and Find Full Text PDF

Hepatitis B core virus-like particles bearing Pgp3 antigen enhance immune response against genital chlamydial infection in mice.

Int Immunopharmacol

January 2025

Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China. Electronic address:

Chlamydia trachomatis Pgp3 protein-induced immunoprotection is effective but incomplete, which requires the suitable adjuvants to enhance its immune response. Within this context, Hepatitis B core virus-like particles (HBc-VLP) emerge as nanoscale protein particles capable of incorporating either endogenous or exogenous antigens or epitopes. In this study, HBc-Pgp3 chimeric protein was accomplished by integrating the identified dominant epitope of the Pgp3 protein into the major immunodominant region of a truncated HBc-VLP, which was realized in the pET28a (+) vector and expressed via the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!