A diabetic ulcer (DU) is a dreaded and resistant complication of diabetes mellitus with high morbidity. Fu-Huang ointment (FH ointment) is a proven recipe for treating chronic refractory wounds; however, its molecular mechanisms of action are unclear. In this study, we identified 154 bioactive ingredients and their 1127 target genes in FH ointment through the public database. The intersection of these target genes with 151 disease-related targets in DUs resulted in 64 overlapping genes. Overlapping genes were identified in the PPI network and enrichment analyses. The PPI network identified 12 core target genes, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that upregulation of the PI3K/Akt signalling pathway was involved in the role of FH ointment in treating diabetic wounds. Molecular docking showed that 22 active compounds in FH ointment could enter the active pocket of PIK3CA. Molecular dynamics was used to prove the binding stability of the active ingredients and protein targets. We found that PIK3CA/Isobutyryl shikonin and PIK3CA/Isovaleryl shikonin combinations had strong binding energies. An in vivo experiment was conducted on PIK3CA, which was the most significant gene.This study comprehensively elucidated the active compounds, potential targets, and molecular mechanism of FH ointment application in treating DUs, and believed that PIK3CA is a promising target for accelerated healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106660DOI Listing

Publication Analysis

Top Keywords

target genes
12
fu-huang ointment
8
signalling pathway
8
wounds molecular
8
overlapping genes
8
ppi network
8
active compounds
8
ointment
6
genes
6
ointment ameliorates
4

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).

View Article and Find Full Text PDF

The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!