A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An atmospheric microwave plasma-based distributed system for medical waste treatment. | LitMetric

An atmospheric microwave plasma-based distributed system for medical waste treatment.

Environ Sci Pollut Res Int

Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.

Published: April 2023

Inadequate handling of infectious medical waste may promote the spread of the virus through secondary transmission during the transfer process. Microwave plasma, an ease-of-use, device-compact, and pollution-free technology, enables the on-site disposal of medical waste, thereby preventing secondary transmission. We developed atmospheric-pressure air-based microwave plasma torches with lengths exceeding 30 cm to rapidly treat various medical wastes in situ with nonhazardous exhaust gas. The gas compositions and temperatures throughout the medical waste treatment process were monitored by gas analyzers and thermocouples in real time. The main organic elements in medical waste and their residues were analyzed by an organic elemental analyzer. The results showed that (i) the weight reduction ratio of medical waste achieved a maximum value of 94%; (ii) a water-waste ratio of 30% was beneficial for enhancing the microwave plasma treatment effect for medical wastes; and (iii) substantial treatment effectiveness was achievable under a high feeding temperature (≥ 600 °C) and a high gas flow rate (≥ 40 L/min). Based on these results, we built a miniaturized and distributed pilot prototype for microwave plasma torch-based on-site medical waste treatment. This innovation could fill the gap in the field of small-scale medical waste treatment facilities and alleviate the existing issue of handling medical waste on-site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942016PMC
http://dx.doi.org/10.1007/s11356-023-25793-0DOI Listing

Publication Analysis

Top Keywords

medical waste
36
waste treatment
16
microwave plasma
16
medical
11
waste
9
secondary transmission
8
medical wastes
8
treatment
6
atmospheric microwave
4
microwave plasma-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!