The design of reactors based on high performance photocatalysts is an important research in catalytic hydrogenation. In this work, modification of titanium dioxide nanoparticles (TiO NPs) was achieved by preparation of Pt/TiO nanocomposites (NCs) through photo-deposition method. Both nanocatalysts were used for the photocatalytic removal of SOx from the flue gas at room temperature in the presence of hydrogen peroxide, water, and nitroacetanilide derivatives under visible light irradiation. In this approach, chemical deSOx was achieved along with protection of the nanocatalyst from sulfur poising through the interaction of the released SOx from SOx-Pt/TiO surface with p-nitroacetanilide derivatives to produce simultaneous aromatic sulfonic acids. Pt/TiO NCs have a bandgap of 2.64 eV in visible light range, which is lower than the bandgap of TiO NPs, whereas TiO NPs have a mean size of 4 nm and a high specific surface area of 226 m/g. Pt/TiO NCs showed high photocatalytic sulfonation of some phenolic compounds using SO as a sulfonating agent along with the existence of p-nitroactanilide derivatives. The conversion of p-nitroacetanilide followed the combination processes of adsorption and catalytic oxidation-reduction reactions. Construction of an online continuous flow reactor-high-resolution time-of-flight mass spectrometry system had been investigated, realizing real-time and automatic monitoring of completion the reaction. 4-nitroacetanilide derivatives (1a-1e) was converted to its corresponding sulfamic acid derivatives (2a-2e) in 93-99% isolated yields of within 60 s. It is expected to offer a great opportunity for ultrafast detection of pharmacophores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104933 | PMC |
http://dx.doi.org/10.1007/s11356-023-25968-9 | DOI Listing |
Chemosphere
January 2025
Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:
Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.
View Article and Find Full Text PDFNanoImpact
January 2025
Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada. Electronic address:
Titanium dioxide (TiO) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO from different manufacturers of different size, crystalline structure and with surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!