Purpose Of Review: SARS-CoV-2 resulted in a global pandemic that had a chilling effect on transplantation early in the pandemic and continues to result in significant morbidity and mortality of transplant recipients. Over the past 2.5 years, our understanding of the clinical utility of vaccination and mAbs to prevent COVID-19 in solid organ transplant (SOT) recipients has been studied. Likewise, approach to donors and candidates with SARS-CoV-2 has been better understood. This review will attempt to summarize our current understanding of these important COVID-19 topics.
Recent Findings: Vaccination against SARS-CoV-2 is effective in reducing the risk of severe disease and death among transplant patients. Unfortunately, humoral and, to a lesser extent, cellular immune response to existing COVID-19 vaccines is reduced in SOT recipients compared with healthy controls. Additional doses of vaccine are required to optimize protection of this population and still may be insufficient in those who are highly immunosuppressed, those receiving belatacept, rituximab and other B-cell active mAbs. Until recently, mAbs were options for the prevention of SARS-CoV-2 but are markedly less effective with recent omicron variants. SARS-CoV-2-infected donors can generally be used for nonlung, nonsmall bowel transplants unless they have died of acute severe COVID-19 or COVID-19-associated clotting disorders.
Summary: Our transplant recipients require a three-dose mRNA or adenovirus-vector and one dose of mRNA vaccine to be optimally protected initially; they then need to receive a bivalent booster 2+ months after completing their initial series. Most nonlung, nonsmall bowel donors with SARS-CoV-2 can be utilized as organ donors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992272 | PMC |
http://dx.doi.org/10.1097/MOT.0000000000001056 | DOI Listing |
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
The newly emerged variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demonstrate resistance to present therapeutic antibodies as well as the capability to evade vaccination-elicited antibodies. JN.1 sublineages were demonstrated as one of the most immune-evasive variants, showing higher neutralization resistance compared to XBB.
View Article and Find Full Text PDFSemin Respir Crit Care Med
January 2025
Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), , (), , and . Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Vaccine Study Center, Northern California Division of Research, Kaiser Permanente, Oakland, CA, United States.
Background: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Obstetrics and Gynecology, Nahdi Care Clinics, Jeddah, Saudi Arabia.
Introduction: Although COVID-19 vaccines have been recommended for children and adolescents since 2021, suboptimal vaccination uptake has been documented. No previous systematic review/meta-analysis (SRMA) investigated parents' willingness to administer COVID-19 vaccines for their children in Saudi Arabia. Accordingly, this SRMA aimed to estimate parents' willingness to immunize their children with COVID-19 vaccines in Saudi Arabia and to identify reasons and determinants influencing parents' decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!