Folic acid (FA) could improve cognitive performance and attenuate brain cell injury in the aging brain; FA supplementation is also associated with inhibiting neural stem cell (NSC) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs in mice via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups ( = 15). Fifteen age-matched senescence-accelerated mouse resistant 1 mice, fed with the FA-normal diet, were used as the standard aging control group. After FA treatment for 6 months, all mice were sacrificed. NSC apoptosis, proliferation, oxidative damage, and telomere length were evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSC apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be explained by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms by which FA inhibits age-associated NSC apoptosis by alleviating telomere length shortening.

Download full-text PDF

Source
http://dx.doi.org/10.1139/apnm-2022-0111DOI Listing

Publication Analysis

Top Keywords

telomere attrition
16
nsc apoptosis
16
senescence-accelerated mouse
12
folic acid
8
age-associated apoptosis
8
neural stem
8
mouse prone
8
alleviating telomere
8
samp8 mice
8
oxidative damage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!