Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells.

ACS Nano

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China.

Published: March 2023

AI Article Synopsis

  • Photovoltaic hydrogen production from seawater is important but faces challenges like chlorine evolution and catalyst issues.
  • This study introduces a new two-dimensional catalyst made of Ni, Fe, Cr, and Mo that enhances electrolysis performance by improving catalytic activity and corrosion resistance.
  • The device shows impressive solar-to-hydrogen efficiency of about 20.61% while operating under industrial conditions, highlighting its potential for clean energy advancements.

Article Abstract

Photovoltaic hydrogen production from seawater is of great significance. Challenges of solar-driven seawater electrolysis, for example, competing among chlorine evolution reactions, chloride corrosion, and catalyst poisoning, seriously restrict the development of this technology. In this paper, we report a two-dimensional nanosheet quaternary metal hydroxide catalyst composed of Ni, Fe, Cr, and Mo elements. By in situ electrochemical activation, a partial Mo element was leached and morphologically transformed in the catalyst. The higher metal valence states and many O vacancies were obtained, providing excellent catalytic activity and corrosion resistance in overall alkaline seawater electrolysis operating at an industrial-required current density of 500 mA cm over 1000 h under 1.82 V low voltages at room temperature. The floating solar seawater splitting device shows a 20.61 ± 0.77% efficiency of solar energy to hydrogen (STH). This work demonstrates the development of efficient solar seawater electrolysis devices and potentially promotes research on clean energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c10477DOI Listing

Publication Analysis

Top Keywords

seawater electrolysis
12
seawater splitting
8
splitting device
8
metal hydroxide
8
solar seawater
8
seawater
5
floating seawater
4
device based
4
based nifecrmo
4
nifecrmo metal
4

Similar Publications

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Developing durably active catalysts to tackle harsh voltage polarization and seawater corrosion is pivotal for efficient solar-to-hydrogen (STH) conversion, yet remains a challenge. We report a durably active catalyst of NiCr-layered double hydroxide (RuNiCr-LDH) with highly exposed Ni-O-Ru units, in which low-loading Ru (0.32 wt %) is locked precisely at defect lattice site (Ru) by Ni and Cr.

View Article and Find Full Text PDF

Hydrogen production from seawater electrolysis.

Chem Commun (Camb)

December 2024

School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China.

The world's energy landscape is undergoing a significant transformation, driven by the urgent need to address the climate issues and growing sustainable energy demand. Hydrogen can be produced from renewable sources and may play a crucial role in the zero-carbon economy, which is regarded as a promising alternative to fossil fuels. Currently, hydrogen production water electrolysis still relies on high-purity water, while seawater electrolysis benefits from the abundance of seawater, which can be particularly beneficial for water-scarce countries, and deep-sea applications, such as floating platforms or islands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!