We report a method to fabricate silicon micro-nanostructures of different shapes by tuning the number of layers and the sizes of self-assembled polystyrene beads, which serve as the mask, and by tuning the reactive ion etching (RIE) time. This process is simple, scalable, and inexpensive without using any sophisticated nanomanufacturing equipment. Specifically, in this work, we demonstrate the proposed process by fabricating silicon micro- or nanoflowers, micro- or nanobells, nanopyramids, and nanotriangles using a self-assembled monolayer or bilayer of polystyrene beads as the mask. We also fabricate flexible micro-nanostructures by using silicon molds with micro-nanostructures. Finally, we demonstrate the fabrication of bandage-type electrochemical sensors with micro-nanostructured working electrodes for detecting dopamine, a neurotransmitter related to stress and neurodegenerative diseases in artificial sweat. All these demonstrations indicate that the proposed process provides a low-cost, easy-to-use approach for fabricating silicon micro-nanostructures and flexible micro-nanostructures, thus paving a way for developing wearable micro-nanostructures enabled sensors for a variety of applications in an efficient manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22285 | DOI Listing |
J Colloid Interface Sci
December 2024
Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.
The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Appl Mater Interfaces
November 2024
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Silicon photonic devices are key components in optical imaging and sensing for communication, and the development of silicon-based photodetectors with ideal performance in the visible and infrared spectral ranges can promote the application of silicon photonics in various photoelectronic systems. Here, a Au-doped black silicon photodetector was prepared by a femtosecond laser direct writing technique. The conical micro-/nanostructures with different sizes were produced by different laser fluence irradiation.
View Article and Find Full Text PDFChemSusChem
September 2024
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
Silicon nanowires (SiNWs) have demonstrated great potential for energy storage due to their exceptional electrical conductivity, large surface area, and wide compositional range. Metal-assisted chemical etching (MACE) is a widely used top-down technique for fabricating silicon micro/nanostructures. SiNWs fabricated by MACE exhibit significant surface areas and diverse surface chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!