Mitochondrial DNA (mtDNA) deletions underpin mitochondrial dysfunction in human tissues in aging and disease. The multicopy nature of the mitochondrial genome means these mtDNA deletions can occur in varying mutation loads. At low levels, these deletions have no impact, but once the proportion of molecules harbouring a deletion exceeds a threshold level, then dysfunction occurs. The location of the breakpoints and the size of the deletion impact upon the mutation threshold required to cause deficiency of an oxidative phosphorylation complex, and this varies for each of the different complexes. Furthermore, mutation load and deletion species can vary between adjacent cells in a tissue, with a mosaic pattern of mitochondrial dysfunction observed. As such, it is often important for understanding human aging and disease to be able to characterise the mutation load, breakpoints and size of deletion(s) from a single human cell. Here, we detail protocols for laser micro-dissection and single cell lysis from tissues, and the subsequent analysis of deletion size, breakpoints and mutation load using long-range PCR, mtDNA sequencing and real-time PCR, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2922-2_29 | DOI Listing |
PLoS One
January 2025
Faculty of Sciences and Technology (FAST), Laboratory of Biology and Molecular Typing in Microbiology (LBTMM), University of Abomey-Calavi, Atlantic, Benin.
Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.
Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
Cytomegalovirus (CMV) infection remains one of the most common and challenging post-transplant infections. Children with inborn errors of immunity (IEI) and T-cell dysfunction are at high risk for CMV infection, which can be complicated by refractory and/or resistant cases. This case describes a Nepalese girl with MHC class II deficiency, who presented at 3 months of age with CMV and Pneumocystis jirovecii pneumonia.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: We aimed to evaluate the efficacy of integrating the Varia5 multiplex assay (qPCR) and whole genome sequencing (WGS) for monitoring SARS-CoV-2, focusing on their overall performance in identifying various virus variants.
Methods: This study included 140 naso-pharyngeal swab samples from individuals with suspected COVID-19. We utilized our self-developed Varia5 multiplex assay, which targets five viral genes linked to COVID-19 mutations, in conjunction with comprehensive genomic analysis performed through whole genome sequencing (WGS) using the Oxford Nanopore system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!