The 2π electron 1,3-dipole boradigermaallyl, valence-isoelectronic to an allyl cation, is synthesized from a bis(germylene). It reacts with benzene at room temperature by insertion of a boron atom into the benzene ring. Computational investigation of the mechanism shows the boradigermaallyl reacting with a benzene molecule in a concerted (4+3) or [π4s+π2s] cycloaddition reaction. Thus, the boradigermaallyl acts as a highly reactive dienophile in this cycloaddition reaction with nonactivated benzene as diene unit. This type of reactivity provides a novel platform for ligand assisted borylene insertion chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202301593 | DOI Listing |
Molecules
December 2024
Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5-indeno[2,1-]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF·EtO. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-]quinolin-7-one phosphine oxides .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
A synthetic strategy of a three-component spiro-pyrrolidine compound based on benzofuran via an [3+2] azomethine ylide cycloaddition reaction is reported herein. Under mild optimal conditions, this reaction can quickly produce potentially bioactive compounds with a wide range of substrates, high yield, and simple operation. The desired products were obtained with a yield of 74-99% and a diastereomeric ratio (dr) of >20:1.
View Article and Find Full Text PDFJ Org Chem
January 2025
Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.
View Article and Find Full Text PDFAnal Chem
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:
The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!