Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Astrocytes are the most abundant and widespread glial cells in the central nervous system. The heterogeneity of astrocytes plays an essential role in spinal cord injury (SCI) repair. Decellularised spinal cord matrix (DSCM) is advantageous for repairing SCI, but little is known regarding the exact mechanisms and niche alterations. Here, we investigated the DSCM regulatory mechanism of glial niche in the neuro-glial-vascular unit using single-cell RNA sequencing. Our single cell sequencing, molecular and biochemical experiments validated that DSCM facilitated the differentiation of neural progenitor cells through increasing the number of immature astrocytes. Upregulation of mesenchyme-related genes, which maintained astrocyte immaturity, causing insensitivity to inflammatory stimuli. Subsequently, we identified serglycin (SRGN) as a functional component of DSCM, which involves inducing CD44-AKT signalling to trigger human spinal cord-derived primary astrocytes (hspASCs) proliferation and upregulation of genes related to epithelial-mesenchymal transition, thus impeding astrocyte maturation. Finally, we verified that SRGN-COLI and DSCM had similar functions in the human primary cell co-culture system to mimic the glia niche. In conclusion, our work revealed that DSCM reverted astrocyte maturation and altered the glia niche into the repairing phase through the SRGN-mediated signalling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472524 | PMC |
http://dx.doi.org/10.1111/cpr.13429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!