In recent times, deep learning has emerged as a great resource to help research in medical sciences. A lot of work has been done with the help of computer science to expose and predict different diseases in human beings. This research uses the Deep Learning algorithm Convolutional Neural Network (CNN) to detect a Lung Nodule, which can be cancerous, from different CT Scan images given to the model. For this work, an Ensemble approach has been developed to address the issue of Lung Nodule Detection. Instead of using only one Deep Learning model, we combined the performance of two or more CNNs so they could perform and predict the outcome with more accuracy. The LUNA 16 Grand challenge dataset has been utilized, which is available online on their website. The dataset consists of a CT scan with annotations that better understand the data and information about each CT scan. Deep Learning works the same way our brain neurons work; therefore, deep learning is based on Artificial Neural Networks. An extensive CT scan dataset is collected to train the deep learning model. CNNs are prepared using the data set to classify cancerous and non-cancerous images. A set of training, validation, and testing datasets is developed, which is used by our Deep Ensemble 2D CNN. Deep Ensemble 2D CNN consists of three different CNNs with different layers, kernels, and pooling techniques. Our Deep Ensemble 2D CNN gave us a great result with 95% combined accuracy, which is higher than the baseline method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941084PMC
http://dx.doi.org/10.1038/s41598-023-29656-zDOI Listing

Publication Analysis

Top Keywords

deep learning
28
ensemble cnn
16
deep ensemble
12
deep
10
lung nodule
8
learning model
8
learning
6
ensemble
5
cnn
5
learning ensemble
4

Similar Publications

This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions.

Acad Radiol

December 2024

Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.). Electronic address:

Rationale And Objectives: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA).

Materials And Methods: A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction.

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

DYT-THAP1 dystonia is a monogenetic form of dystonia, a movement disorder characterized by the involuntary co-contraction of agonistic and antagonistic muscles. The disease is caused by mutations in the THAP1 gene, although the precise mechanisms by which these mutations contribute to the pathophysiology of dystonia remain unclear. The incomplete penetrance of DYT-THAP1 dystonia, estimated at 40 to 60 %, suggests that an environmental trigger may be required for the manifestation of the disease in genetically predisposed individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!