Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13469 | DOI Listing |
Int Immunopharmacol
December 2024
Dental Disease Prevention and Treatment Center of Minhang District, Shanghai 201103, China. Electronic address:
Background: Periodontitis, a chronic inflammatory disease, poses challenges in treatment due to its complex etiology. Tripterygium glycosides (TGs), renowned for their immunosuppressive and anti-inflammatory capabilities, present a prospective therapeutic option for the management of periodontitis. This study delves into the therapeutic efficacy of TGs in periodontitis and reveals the fundamental mechanisms involved.
View Article and Find Full Text PDFChin J Nat Med
December 2024
National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy.
View Article and Find Full Text PDFCancer Prev Res (Phila)
December 2024
Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
This study aimed to assess how ursolic acid (UA) can protect human skin keratinocytes from damage caused by ultraviolet B (UVB) radiation. Utilizing an omics-based approach, we characterized the features of photodamage and investigated the potential of UA to reverse HaCaT cell subpopulation injury caused by UVB radiation. The most significant changes in metabolite levels after UA treatment were in pathways associated with phosphatidylcholine biosynthesis, arginine and proline metabolism.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
Objectives: In the present study, we investigate the effect of FeO nanoparticles conjugated with ursolic acid (FeONPs@UA) on inhibiting the growth, biofilm-forming ability and efflux pump activity in clinical isolates of Pseudomonas aeruginosa with multiple drug resistance.
Methods: Iron oxide NPs conjugated with ursolic acid (FeONPs@UA) were synthesized. Physicochemical features of the NPs were studied by FT-IR, XRD, EDAX, and TEM.
Chem Biodivers
December 2024
CSIR - North East Institute of Science and Technology, Centre for Pre-clinical Studies, Pulibor, 785006, Jorhat, INDIA.
This study highlights the prooxidant, antiproliferative and anti-inflammatory potential of ripe Meyna spinosa Roxb. ex Link fruit extracts. Chemical analysis by HRMS and AAS identified compounds like ursolic acid, oleanolic acid, lupeol, betulin, scopoletin, phloroglucinol, secoxyloganin, etc and micro-elements like iron, copper, zinc, and manganese.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!