Single-cell Nucleosome Occupancy and Methylome sequencing (scNOMe-seq) is a multimodal assay that simultaneously measures endogenous DNA methylation and nucleosome occupancy (i.e., chromatin accessibility) in single cells. scNOMe-seq combines the activity of a GpC Methyltransferase, an enzyme which methylates cytosines in GpC dinucleotides, with bisulfite conversion, whereby unmethylated cytosines are converted into thymines. Because GpC Methyltransferase acts only on cytosines present in non-nucleosomal regions of the genome, the subsequent bisulfite conversion step not only detects the endogenous DNA methylation, but also reveals the genome-wide pattern of chromatin accessibility. Implementing this technology at the single-cell level helps to capture the dynamics governing methylation and accessibility vary across individual cells and cell types. Here, we provide a scalable plate-based protocol for preparing scNOMe-seq libraries from single nucleus suspensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2899-7_12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!