Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. CDK4/6 inhibitor palbociclib was reported to be one of the top-scored repurposed drugs to treat COVID-19. As the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry, expression level of angiotensin-converting enzyme 2 (ACE2) is closely related to SARS-CoV-2 infection. In this study, we demonstrated that palbociclib and other methods could arrest cells in G0/G1 phase and up-regulate ACE2 mRNA and protein levels without altering its subcellular localization. Palbociclib inhibited ubiquitin-proteasome and lysosomal degradation of ACE2 through down-regulating S-phase kinase-associated protein 2 (SKP2). In addition, increased ACE2 expression induced by palbociclib and other cell cycle arresting compounds facilitated pseudotyped SARS-CoV-2 infection. This study suggested that ACE2 expression was down-regulated in proliferating cells. Cell cycle arresting compounds could increase ACE2 expression and facilitate SARS-CoV-2 cell entry, which may not be suitable therapeutic agents for the treatment of SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938000 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2023.105558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!