Mitochondrial function-oxidative phosphorylation and the generation of reactive oxygen species-is critical in both health and disease. Thus, measuring mitochondrial function is fundamental in biomedical research. Skeletal muscle is a robust source of mitochondria, particularly in animals with a very high aerobic capacity, such as horses, making them ideal subjects for studying mitochondrial physiology. This article demonstrates the use of high-resolution respirometry with concurrent fluorometry, with freshly harvested skeletal muscle mitochondria, to quantify the capacity to oxidize substrates under different mitochondrial states and determine the relative capacities of distinct elements of mitochondrial respiration. Tetramethylrhodamine methylester is used to demonstrate the production of mitochondrial membrane potential resulting from substrate oxidation, including calculation of the relative efficiency of the mitochondria by calculating the relative membrane potential generated per unit of concurrent oxygen flux. The conversion of ADP to ATP results in a change in the concentration of magnesium in the reaction chamber, due to differing affinities of the adenylates for magnesium. Therefore, magnesium green can be used to measure the rate of ATP synthesis, allowing the further calculation of the oxidative phosphorylation efficiency (ratio of phosphorylation to oxidation [P/O]). Finally, the use of Amplex UltraRed, which produces a fluorescent product (resorufin) when combined with hydrogen peroxide, allows the quantification of reactive oxygen species production during mitochondrial respiration, as well as the relationship between ROS production and concurrent respiration. These techniques allow the robust quantification of mitochondrial physiology under a variety of different simulated conditions, thus shedding light on the contribution of this critical cellular component to both health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!