The Coincidental Evolution of Virulence Partially Explains the Virulence in a Generalist Entomopathogenic.

Acta Parasitol

ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro No.8701. Col. Ex-Hacienda San José de la Huerta Código Postal 58190, Morelia, Michoacán, Mexico.

Published: June 2023

Purpose: The parasites' virulence is labile after jumping to a new host species, and it might derivate in gaining virulence against a new host as a side effect of living in a non-host environment (coincidental evolution of virulence hypothesis).

Methods: To test this hypothesis, we monitored the experimental evolution of the Rhabditis regina nematode for over 290 generations (4 years) in three environments (strains): (1) the natural host, Phyllophaga polyphylla, (2) an alternate host, Tenebrio molitor, and (3) saprophytic medium (beef; the food that may provide evidence for the coincidental evolution of virulence). Each strain was exposed to P. polyphylla, T. molitor, or Galleria mellonella. We compared the host survival and immune response (proPO, PO, and lytic activity) of infected versus uninfected hosts.

Results: The saprophytic nematodes gained virulence only against G. mellonella. However, the P. polyphylla strain was more effective in killing P. polyphylla than T. molitor, and the T. molitor strain was more effective against T. molitor than P. polyphylla. Additionally, one dauer larva was sufficient to kill the hosts. Finally, the immune response did not differ between the challenged and control groups.

Conclusion: The coincidental evolution of virulence partially explains our results, but they might also support the short-sighted hypothesis. Additionally, we found evidence for immunomodulation because nematodes passed unnoticed to the immune response. It is crucial to analyze the virulence of entomopathogens from the point of view of the evolution of virulence to be aware of potential scenarios that might limit biological control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281897PMC
http://dx.doi.org/10.1007/s11686-023-00663-4DOI Listing

Publication Analysis

Top Keywords

evolution virulence
20
coincidental evolution
16
immune response
12
virulence
10
virulence partially
8
partially explains
8
evolution
5
molitor
5
coincidental
4
explains virulence
4

Similar Publications

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

An open question in epidemiology is why transmission is often overdispersed, meaning that most new infections are driven by few infected individuals. For example, around 10% of COVID-19 cases cause 80% of new COVID-19 cases. This overdispersion in parasite transmission is likely driven by intrinsic heterogeneity among hosts, i.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.

View Article and Find Full Text PDF

Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research.

Philos Trans R Soc Lond B Biol Sci

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.

The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!