TLR4 agonist activity of Alcaligenes lipid a utilizes MyD88 and TRIF signaling pathways for efficient antigen presentation and T cell differentiation by dendritic cells.

Int Immunopharmacol

Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan. Electronic address:

Published: April 2023

Alcaligenes faecalis was previously identified as an intestinal lymphoid tissue-resident commensal bacteria, and our subsequent studies showed that lipopolysaccharide and its core active element (i.e., lipid A) have a potent adjuvant activity to promote preferentially antigen-specific Th17 response and antibody production. Here, we compared A. faecalis lipid A (ALA) with monophosphoryl lipid A, a licensed lipid A-based adjuvant, to elucidate the immunological mechanism underlying the adjuvant properties of ALA. Compared with monophosphoryl lipid A, ALA induced higher levels of MHC class II molecules and costimulatory CD40, CD80, and CD86 on dendritic cells (DCs), which in turn resulted in strong T cell activation. Moreover, ALA more effectively promoted the production of IL-6 and IL-23 from DCs than did monophosphoryl lipid A, thus leading to preferential induction of Th17 and Th1 cells. As underlying mechanisms, we found that the ALA-TLR4 axis stimulated both MyD88- and TRIF-mediated signaling pathways, whereas monophosphoryl lipid A was biased toward TRIF signaling. These findings revealed the effects of ALA on DCs and T cells and its induction pattern on signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.109852DOI Listing

Publication Analysis

Top Keywords

monophosphoryl lipid
16
signaling pathways
12
lipid
8
trif signaling
8
dendritic cells
8
lipid ala
8
ala
5
tlr4 agonist
4
agonist activity
4
activity alcaligenes
4

Similar Publications

Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms.

View Article and Find Full Text PDF

Background: Recombinant avian influenza subunit vaccines often require adjuvants to enhance immune responses. This study aims to evaluate the immune-enhancing potential of seven combination adjuvants in specific pathogen-free (SPF) chickens.

Methods: SPF chickens were vaccinated with combinations of ISA78VG and adjuvants, including Quil-A, CpG, and monophosphoryl lipid A (MPLA).

View Article and Find Full Text PDF

Background: We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection.

Methods: Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.

View Article and Find Full Text PDF

Enhanced Antitumor Immunity of a Globo H-Based Vaccine Enabled by the Combination Adjuvants of 3D-MPL and QS-21.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

Globo H, a specific carbohydrate antigen overexpressed on various human malignancies, has attracted considerable interest as an antigenic target for anticancer vaccine development. Despite several Globo H-based carbohydrate vaccines that have been designed, efficient access to Globo H hexasaccharide antigen and development of powerful adjuvants for enhancing antitumor immunity remain challenging. Herein, we reported a streamlined chemoenzymatic approach to prepare this hexasaccharide antigen, relying on chemical synthesis of Gb5 pentasaccharide by a stereoconvergent [2+3] strategy and subsequent enzymatic α-fucosylation to easily install α1,2-fucose residue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!