Small extracellular vesicles (sEVs) derived from tissue can reflect the functional status of the source cells and the characteristics of the tissue's interstitial space. The efficient enrichment of these sEVs is an important prerequisite to the study of their biological function and a key to the development of clinical detection techniques and therapeutic carrier technology. It is difficult to isolate sEVs from tissue because they are usually heavily contaminated. This study provides a method for the rapid enrichment of high-quality sEVs from liver cancer tissue. The method involves a four-step process: the incubation of digestive enzymes (collagenase D and DNase Ι) with tissue, filtration through a 70 µm cell strainer, differential ultracentrifugation, and filtration through a 0.22 µm membrane filter. Owing to the optimization of the differential ultracentrifugation step and the addition of a filtration step, the purity of the sEVs obtained by this method is higher than that achieved by classic differential ultracentrifugation. It provides an important methodology and supporting data for the study of tissue-derived sEVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!