Experimental approaches in studying active biomolecules modulating fruit ripening: Melatonin as a case study.

Plant Physiol

Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain.

Published: July 2023

AI Article Synopsis

Article Abstract

Phytohormones are naturally occurring small organic molecules found at low concentrations in plants. They perform essential functions in growth and developmental processes, from organ initiation to senescence, including fruit ripening. These regulatory molecules are studied using different experimental approaches, such as performing exogenous applications, evaluating endogenous levels, and/or obtaining genetically modified lines. Here, we discuss the advantages and limitations of current experimental approaches used to study active biomolecules modulating fruit ripening, focusing on melatonin. Although melatonin has been implicated in fruit ripening in several model fruit crops, current knowledge is affected by the different experimental approaches used, which have given different and sometimes even contradictory results. The methods of application and the doses used have produced different results in studies based on exogenous applications, while different measurement methods and ways of expressing results explain most of the variability in studies using correlative analyses. Furthermore, studies on genetically modified crops have focused on tomato (Solanum lycopersicum L.) plants only. However, TILLING and CRISPR methodologies are becoming essential tools to complement the results from the experimental approaches described above. This will not only help the scientific community better understand the role of melatonin in modulating fruit ripening, but it will also help develop technological advances to improve fruit yield and quality in major crops. The combination of various experimental approaches will undoubtedly lead to a complete understanding of the function of melatonin in fruit ripening in the near future, so that this knowledge can be effectively transferred to the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315297PMC
http://dx.doi.org/10.1093/plphys/kiad106DOI Listing

Publication Analysis

Top Keywords

experimental approaches
24
fruit ripening
24
modulating fruit
12
active biomolecules
8
biomolecules modulating
8
fruit
8
exogenous applications
8
genetically modified
8
will help
8
experimental
6

Similar Publications

Refining the Distinct Cu-N Coordination in Mesoporous N-Doped Carbon to Boost Selective Deuteration under Mild Conditions.

ACS Appl Mater Interfaces

January 2025

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.

Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.

View Article and Find Full Text PDF

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

Objective: Extracting PICO elements-Participants, Intervention, Comparison, and Outcomes-from clinical trial literature is essential for clinical evidence retrieval, appraisal, and synthesis. Existing approaches do not distinguish the attributes of PICO entities. This study aims to develop a named entity recognition (NER) model to extract PICO entities with fine granularities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!