Longitudinal trajectories in negative symptoms and changes in brain cortical thickness: 10-year follow-up study.

Br J Psychiatry

Mental Health Service, Hospital Universitario Virgen del Rocío, Seville, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Madrid, Spain; Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain; and Department of Psychiatry, Universidad de Sevilla, Seville, Spain.

Published: July 2023

Background: Understanding the evolution of negative symptoms in first-episode psychosis (FEP) requires long-term longitudinal study designs that capture the progression of this condition and the associated brain changes.

Aims: To explore the factors underlying negative symptoms and their association with long-term abnormal brain trajectories.

Method: We followed up 357 people with FEP over a 10-year period. Factor analyses were conducted to explore negative symptom dimensionality. Latent growth mixture modelling (LGMM) was used to identify the latent classes. Analysis of variance (ANOVA) was conducted to investigate developmental trajectories of cortical thickness. Finally, the resulting ANOVA maps were correlated with a wide set of regional molecular profiles derived from public databases.

Results: Three trajectories (stable, decreasing and increasing) were found in each of the three factors (expressivity, experiential and attention) identified by the factor analyses. Patients with an increasing trajectory in the expressivity factor showed cortical thinning in caudal middle frontal, pars triangularis, rostral middle frontal and superior frontal regions from the third to the tenth year after the onset of the psychotic disorder. The -statistic map of cortical thickness expressivity differences was associated with a receptor density map derived from positron emission tomography data.

Conclusions: Stable and decreasing were the most common trajectories. Additionally, cortical thickness abnormalities found at relatively late stages of FEP onset could be exploited as a biomarker of poor symptom outcome in the expressivity dimension. Finally, the brain areas with less density of receptors spatially overlap areas that discriminate the trajectories of the expressivity dimension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331319PMC
http://dx.doi.org/10.1192/bjp.2022.192DOI Listing

Publication Analysis

Top Keywords

cortical thickness
16
negative symptoms
12
factor analyses
8
stable decreasing
8
middle frontal
8
expressivity dimension
8
cortical
5
expressivity
5
longitudinal trajectories
4
negative
4

Similar Publications

This study aimed to evaluate the diagnostic accuracy of ultrasonography in assessing the response of clipped axillary lymph nodes to neoadjuvant chemotherapy. Between February 2022 and September 2023, 43 patients who underwent axillary lymph node marking for targeted axillary dissection were retrospectively analyzed. Ultrasonography parameters such as the number, size, shape, cortical thickness, hilum status, and treatment response of the clipped lymph node were assessed.

View Article and Find Full Text PDF

Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.

View Article and Find Full Text PDF

Background: MicroRNAs have been linked to dementia. However, understanding their relation to cognition in the general population is required to determine their potential use for the detection and prevention of age-associated cognitive decline and preclinical dementia. Therefore, we examined the association of circulating microRNAs with cognitive performance in a population-based cohort and the possible underlying mechanisms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is a neurological disorder marked by progressive cognitive decline, memory deficits, and neuronal cell loss (Knopman, 2021). A brain region significantly impacted by the progression of AD is the subiculum, a structure responsible for spatial navigation, cognitive processes, and the modulation of emotional and affective behaviors within the hippocampus (Fanselow and Dong, 2010). Although subiculum cell loss has been well-established as an early indicator of AD (Carlesimo et al.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Cerebral small vessel disease (CSVD), which includes cerebral amyloid angiopathy (CAA) and arteriolosclerosis, often co-occurs with Alzheimer's disease (AD) pathology. The medial temporal lobe (MTL) is susceptible to hosting multiple AD pathologies, such as neurofibrillary tangles (NFTs), amyloid-β plaques, phospho-Tar-DNA-Binding-Protein-43 (pTDP-43), as well as CSVD. Whether a causal relationship between these pathologies exists remains largely unknown, but one potential linking mechanism is the dysfunction of perivascular clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!