Role of L-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions.

Eur J Cell Biol

Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland.

Published: June 2023

Lactate has long been acknowledged to be a metabolic waste product, but it has more recently been found as a fuel energy source in mammalian cells. Podocytes are an important component of the glomerular filter, and their role in maintaining the structural integrity of this structure was established. These cells rely on a constant energy supply and reservoir. The utilization of alternative energy substrates to preserve energetic homeostasis is a subject of extensive research, and lactate appears to be one such candidate. Therefore, we investigated the role of lactate as an energy substrate and characterize the lactate transport system in cultured rat podocytes during sufficient and insufficient glucose supplies. The present study, for the first time, demonstrated the presence of lactate transporters in podocytes. Moreover, we observed modified the amount of these transporters in response to limited glucose availability and after l-lactate supplementation. Simultaneously, exposure to l-lactate preserved cell survival during insufficient glucose supply. Interestingly, during glucose deprivation, lactate exposure allowed the steady flow of glycolysis and prevented glycogen reserves depletion. Summarizing, podocytes utilize lactate as an energy substrate and possess a developed system that controls lactate homeostasis, suggesting that it plays an essential role in podocyte metabolism, especially during fluctuations of energy availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2023.151298DOI Listing

Publication Analysis

Top Keywords

energy substrate
12
rat podocytes
8
glucose deprivation
8
lactate
8
lactate energy
8
insufficient glucose
8
energy
7
podocytes
5
glucose
5
role
4

Similar Publications

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.

View Article and Find Full Text PDF

Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!