MXenes have gained widespread interest in flexible supercapacitor due to their rich electrochemical activity and free-standing electrode structure. However, it has been a challenge to obtain an electrode with high (mass and volumetric) specific capacitance, high rate and long cycle life simultaneously. Herein, we have prepared a novel few-layer double transition metal carbide (TiV)CT MXene. Multivalent V atoms with high electrochemical activity were constructed in stable MC-type MXene to obtain the (TiV)CT electrode with excellent performance in flexible supercapacitors. The (TiV)CT film has an excellent specific capacitance of 387F g (1625 mF cm) at 1.0 A g, and 267 F g (1121 mF cm) even at a high current density of 20.0 A g, demonstrating superior rate performance (69%). Moreover, the capacitance of the (TiV)CT film remains stable during 100,000 cycles. The symmetric supercapacitor assembled using (TiV)CT film has high energy and power densities, up to 5.6 Wh kg and 5210.3 W kg. And the all-solid-state (TiV)CT flexible SC maintains stable electrochemical performance after 200 bending cycles. This work shows the huge potential of (TiV)CT in flexible supercapacitor, and provides a new idea for the design of high performance flexible electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.02.068 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.
Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications.
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.
Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!