A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid membrane surface functionalization with Ag nanoparticles via coupling electrospray and polymeric solvent bonding for enhanced antifouling and catalytic performance: Deposition and interfacial reaction mechanisms. | LitMetric

AI Article Synopsis

  • Electrospray is a fast and scalable method for applying engineered nanomaterials (ENMs) to membrane surfaces, but a lack of understanding of the deposition process limits its effectiveness.
  • Advanced techniques, including laser diffraction and aerosol modeling, help analyze key factors like droplet size and evaporation rates, revealing that polymeric bonding significantly stabilizes deposited silver nanoparticles (Ag NPs).
  • The research finds that optimal conditions like material compatibility and specific ratios enhance Ag NP coverage and stability, leading to membranes with improved catalytic and antimicrobial properties, despite a slight decrease in water permeability.

Article Abstract

Electrospray is an effective, fast, and potentially scalable approach for membrane surface functionalization using various engineered nanomaterials (ENMs). However, the lack of fundamental understandings of the deposition process hinders the controlled deposition, efficient utilization, and long-term stabilization of the ENMs, and thus the practical applications of the nanocomposite membranes. To bridge this critical knowledge gap, advanced online characterization techniques (laser diffraction size measurement and laser doppler velocimetry) coupled with mathematical aerosol modeling are utilized to understand the three key process parameters: droplet size, deposition velocity, and evaporation rate. After deposition, polymeric solvent bonding (i.e., interdiffusion and subsequent entanglement of polymers) was found to substantially stabilize the deposited Ag NPs. We further provide a comprehensive description of such interfacial reaction mechanisms. Our results show a consistency between theoretical predication and measurement of the droplet size or deposition velocity, whereas realistic droplet evaporation rate is lower than the theoretical value due to the addition of the polymer. Successful stabilization of Ag NPs via interfacial polymeric bonding occurs under the conditions of large material contact area, high material compatibility, proper temperature (e.g., 22 °C), and polymer-to-solvent ratio (e.g., 3-5%). Our coupled approach achieves superior Ag NP coverage with high stability within minutes. Despite some reduction in water permeance, the resultant membrane shows markedly improved catalytic and antimicrobial (antibiofouling) performance (>90% enhancement) and maintained rejection. Taken together, our findings provide fundamental insights into the coupled process of electrospray deposition and polymeric solvent bonding to enable additive manufacturing of novel nanocomposite membranes with diverse structures and multiple functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.02.047DOI Listing

Publication Analysis

Top Keywords

polymeric solvent
12
solvent bonding
12
membrane surface
8
surface functionalization
8
interfacial reaction
8
reaction mechanisms
8
nanocomposite membranes
8
droplet size
8
size deposition
8
deposition velocity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!