Mineralization promotion and protection effect of carboxymethyl chitosan biomodification in biomimetic mineralization.

Int J Biol Macromol

State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:

Published: April 2023

Biomimetic mineralization emphasizes reversing the process of dental caries through bio-inspired strategies, in which mineralization promotion and collagen protection are equally important. In this study, carboxymethyl chitosan (CMC) was deemed as an analog of glycosaminoglycan for biomimetic modification of collagen, both of the mineralization facilitation and collagen protection effect were evaluated. Experiments were carried out simultaneously on two-dimensional monolayer reconstituted collagen model, three-dimensional reconstituted collagen model and demineralized dentin model. In three models, CMC was successfully cross-linked onto collagen utilizing biocompatible 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy sulfosuccinimide sodium salt to achieve biomodification. Results showed that CMC biomodification increased collagen's hydrophilicity, calcium absorption capacity and thermal degradation resistance. In demineralized dentin model, the activity of endogenous matrix metalloproteinases was significantly inhibited by CMC biomodification. Furthermore, CMC biomodification significantly improved cross-linking and intrafibrillar mineralization of collagen, especially in the two-dimensional monolayer reconstituted collagen model. This study provided a biomimetic mineralization strategy with comprehensive consideration of collagen protection, and enriched the application of chitosan-based materials in dentistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123720DOI Listing

Publication Analysis

Top Keywords

biomimetic mineralization
12
collagen protection
12
reconstituted collagen
12
collagen model
12
cmc biomodification
12
collagen
9
mineralization promotion
8
carboxymethyl chitosan
8
two-dimensional monolayer
8
monolayer reconstituted
8

Similar Publications

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8.

ACS Appl Mater Interfaces

January 2025

Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.

Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!