Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2023.106417DOI Listing

Publication Analysis

Top Keywords

ultrastructural cellular
8
studies mcs
8
animals plants
8
mcs
7
cellular
5
state-of-the-art review
4
review ecotoxicology
4
ecotoxicology health
4
health hazards
4
hazards economic
4

Similar Publications

Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure.

View Article and Find Full Text PDF

Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).

View Article and Find Full Text PDF

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.

Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.

Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!