Alkaline industrial wastes - Characteristics, environmental risks, and potential for mine waste management.

Environ Pollut

ARC Research Hub for Transforming the Mining Value Chain & Centre for Ore Deposit and Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania, 7001, Australia. Electronic address:

Published: April 2023

AI Article Synopsis

  • Large quantities of alkaline industrial wastes, such as green liquor dregs and coal ash, can be repurposed to manage acid and metalliferous drainage (AMD) instead of being discarded.
  • Research shows that materials like red mud and wood ash can effectively limit AMD formation and help neutralize acidic drainage by precipitating metal(loid)s.
  • While these wastes generally pose low metal(loid) risks, certain oxyanions were found in harmful concentrations, indicating the need for careful management when using them for environmental remediation.

Article Abstract

The large quantities of alkaline industrial wastes that are generated globally have the potential to be valorized in various applications instead of being landfilled. This study evaluated the potential reuse of green liquor dregs (GLD), wood ashes, coal ash, red mud, mussel, scallop, and oyster shells to control acid and metalliferous drainage (AMD). Low hydraulic conductivities (10 to 10 m/min) suggest that covers constructed from fine-grained GLD, red mud, coal ash and wood fly ash can limit the formation of AMD. Static and kinetic test leachates of pH 5.8 to 10.6 indicate that the tested materials can neutralize acidic drainage and immobilize metal(loid)s by precipitation. The alkalinity is proportional to the amount and reactivity of carbonate and hydroxide fractions with red mud followed by coal ash being the most alkaline over 100 weeks and wood ashes the least. The tested industrial wastes generate leachates with a low metal(loid) risk when screened against the Australian freshwater guidelines. However, oxyanions including Al, Cr, Cu, Se, and V were leached in deleterious concentrations ≤100 times more than the guidelines because of their mobility in alkaline conditions. The outcomes of this study highlighted that alkaline industrial wastes can be potentially used in the long-term remediation of AMD as part of an environmentally sustainable and cost-effective integrated mine waste management strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121292DOI Listing

Publication Analysis

Top Keywords

industrial wastes
16
alkaline industrial
12
coal ash
12
red mud
12
mine waste
8
waste management
8
wood ashes
8
mud coal
8
alkaline
5
wastes
4

Similar Publications

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.

View Article and Find Full Text PDF

Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.

View Article and Find Full Text PDF

Advanced Catalysts for the Chemical Recycling of Plastic Waste.

Adv Mater

January 2025

Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.

Plastic products bring convenience to various aspects of the daily lives due to their lightweight, durability and versatility, but the massive accumulation of post-consumer plastic waste is posing significant environmental challenges. Catalytic methods can effectively convert plastic waste into value-added feedstocks, with catalysts playing an important role in regulating the yield and selectivity of products. This review explores the latest advancements in advanced catalysts applied in thermal catalysis, microwave-assisted catalysis, photocatalysis, electrocatalysis, and enzymatic catalysis reaction systems for the chemical recycling of plastic waste into valuable feedstocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!