Histiocytic sarcoma (HS) is an aggressive malignant neoplasm in dogs. Expression and prognostic significance of transforming growth factor beta (TGF-β), programmed death-ligand 1 (PD-L1), and T regulatory cells (Tregs) in HS is unknown. The goal of this study was to investigate the expression and prognostic significance of TGF-β, PD-L1, and FoxP3/CD25 in canine HS utilizing RNA in situ hybridization (RNAscope®). After validation was performed, RNAscope® on formalin-fixed paraffin-embedded (FFPE) patient HS tissue samples was performed for all targets and expression quantified with HALO® software image analysis. Cox proportional hazard model was conducted to investigate the association between survival time and each variable. Additionally, for categorical data, the Kaplan-Meier product-limit method was used to generate survival curves. TGF-β and PD-L1 mRNA expression was confirmed in the DH82 cell line by reverse transcription polymerase chain reaction (RT-PCR) and CD25 + FoxP3 + cells were detected by flow cytometry in peripheral blood. Once the RNAscope® method was validated, TGF-β H-score and dots/cell and FoxP3 dots/cell were assessed in HS samples and found to be significantly correlated with survival. Moderate positive correlations were found between FoxP3 and PD-L1 H-score, percent staining area, and dots/cell, and FoxP3 and TGF-β dots/cell. In summary, RNAscope® is a valid technique to detect TGF-β and PD-L1 expression and identify Tregs in canine HS FFPE tissues. Furthermore, canine HS expresses TGF-β and PD-L1. Increased TGF-β and FoxP3 correlated with worse prognosis. Prospective studies are warranted to further investigate TGF-β, PD-L1, and Tregs effect on prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2023.110560DOI Listing

Publication Analysis

Top Keywords

tgf-β pd-l1
20
expression prognostic
12
tgf-β
9
factor beta
8
programmed death-ligand
8
regulatory cells
8
histiocytic sarcoma
8
prognostic significance
8
dots/cell foxp3
8
pd-l1
6

Similar Publications

Background: Selective serotonin reuptake inhibitors (SSRIs) are the primary choice for antidepressant therapy in cancer patients with depression. Programmed death-1 and programmed cell death-ligand 1 (PD-1/PD-L1) play a critical role in immune checkpoint inhibitors. To date, there have been no studies reporting adverse events (AEs) associated with the real-world use of PD-1/PD-L1 inhibitors-SSRIs combination.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a cystic lung disease that primarily affects women. LAM is caused by the invasion of metastatic smooth muscle-like cells into the lung parenchyma, leading to abnormal cell proliferation, lung remodeling and progressive respiratory failure. LAM cells have TSC gene mutations, which occur sporadically or in people with Tuberous Sclerosis Complex.

View Article and Find Full Text PDF

Antibody-dependent cellular phagocytosis (ADCP) by monocytes and macrophages contributes significantly to the efficacy of many therapeutic monoclonal antibodies (mAbs), including anti-CD20 rituximab (RTX) targeting CD20 B-cell non-Hodgkin lymphomas (NHL). However, ADCP is constrained by various immune checkpoints, notably the anti-phagocytic CD47 molecule, necessitating strategies to overcome this resistance. We have previously shown that the IgG2 isotype of RTX induces CD20-mediated apoptosis in B-cell lymphoma cells and, when combined with RTX-IgG1 or RTX-IgG3 mAbs, can significantly enhance Fc receptor-mediated phagocytosis.

View Article and Find Full Text PDF

For the past few years, researchers and oncologists have been pushing to find biomarkers that would help predict which treatment option would best work on a patient. Tumor Mutational Burden (TMB) is one of the latest biomarkers that is being studied and considered as a promising agnostic immunotherapy biomarker. However, it still shows controversial results in studies due to the difficulty in finding solid comparable results.

View Article and Find Full Text PDF

An anti-PD-L1 mediated nanodrug delivery system is developed by modifying the MOF surface and using Tpy-Gd-Tpy coordination chemistry, enabling the simultaneous delivery of chemotherapy and immunotherapy drugs. The platform enables regulated drug release and integrates multiple imaging modalities, promoting targeted delivery and facilitating tumor diagnosis through FL and MR imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!